If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+2x-24=0
a = 4; b = 2; c = -24;
Δ = b2-4ac
Δ = 22-4·4·(-24)
Δ = 388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{388}=\sqrt{4*97}=\sqrt{4}*\sqrt{97}=2\sqrt{97}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{97}}{2*4}=\frac{-2-2\sqrt{97}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{97}}{2*4}=\frac{-2+2\sqrt{97}}{8} $
| 35=x-(.30x) | | =27+8x5−x5 | | 1/3(9x-6)=5×+3 | | 2/13x+9=3/17x | | -2/3p=11 | | v=4/3 | | 15x+.58=4.78 | | v=4/33 | | 4-2t/4=-2 | | 8(2n+5)=6(5n+9)+8 | | 8(2n+5)=6(5n+9)= | | 143+59+e=180 | | =15+5y5+y7 | | (2x+5)+(x^2+25)=0 | | X^2+21x+86=0 | | 1/5x+1/2=3(5/6x-1) | | 2w+18=w | | 3n^2+n-4=0 | | -5/2u=30 | | -y^2=-2y-15 | | 4P-12=-(2p+8) | | 2(2n+2)=7(4n+3)3+8 | | 5x+12/10=x/5 | | 9/5x-1/8=3/4x | | 2(2n+2=7(4n+3)3+8 | | 4x+1+5x+1=11 | | 5m+2(m+10)=83 | | 9m-3(m+6)=2(m+1 | | 150m-125m+38,400=40,800-175m | | -7/4y=21 | | 5(4.1-1.1b)=-8(9.5b+2.5) | | X+8+16=2x+10 |